In the third part we have shown how the study of the so-called 'restrictive conditions for universals' in Navya-Nyaya logic anticipated some of the developments of modern set theory. [...] In this section the discussion will center around some of the 'restrictive conditions for universals (jatibadhaka) proposed by Udayana. [...] Another restrictive condition is anavastha or vicious infinite regress. According to this restrictive condition, no universal (jati) can be admitted to exist, the admission of which would lead to a vicious infinite regress. As an example Udayana says that there can be no universal of which every universal is a member; for if we had any such universal, then, by hypothesis, we have got a given totality of all universals that exist and all of them belong to this big universal. But this universal is itself a universal and hence (since it cannot be a member of itself, because in Udayana's view no universal can be a member of itself) this universal too along with other universals must belong to a bigger universal and so on ad infinitum. What Udayana says here has interesting analogues in modern set theory in which it is held that a set of all sets (i.e., a set to which every set belongs) does not exist.
No comments:
Post a Comment